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Generalized Finite Difference Methods

Model problem: Poisson equation with Dirichlet boundary

∆u = f on Ω, u|∂Ω = g.

Localized numerical differentiation (Ξ ⊂ Ω, Ξi ⊂ Ξ small):

∆u(ξi) ≈
∑

ξj∈Ξi

wi ,ju(ξj) for all ξi ∈ Ξ \ ∂Ω

Find a discrete approximate solution û defined on Ξ s.t.

∑

ξj∈Ξi

wi ,j û(ξj) = f (ξi) for ξi ∈ Ξ \ ∂Ω

û(ξi) = g(ξi) for ξi ∈ ∂Ω

Sparse system matrix [wi ,j ]ξi ,ξj∈Ξ\∂Ω.
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Generalized Finite Difference Methods

Sets of influence: Select Ξi for each ξi ∈ Ξ \ ∂Ξ

ξi

ξi

Ξi

Ξi is the ‘star’ or ‘set of influence’ of ξi
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Generalized Finite Difference Methods

“Consistency and Stability =⇒ Convergence”:

‖û − u|Ξ‖︸ ︷︷ ︸
solution error

≤ S
∥∥∥
[
∆u(ξi)−

∑

ξj∈Ξi

wi ,ju(ξj)
]
ξi∈Ξ\∂Ω

∥∥∥

︸ ︷︷ ︸
consistency error

S := ‖[wi ,j ]
−1
ξi ,ξj∈Ξ\∂Ω

‖ − stability constant

‖ · ‖ − a vector norm, e.g. ‖ · ‖∞ (max) or quadratic mean (rms),

respectively a matrix norm, ‖ · ‖∞ or ‖ · ‖2

If S is bounded, then the convergence order for a sequence of

discretisations Ξn is determined by the consistency error:

∆u(ξi)−
∑

ξj∈Ξi

wi ,ju(ξj) (numerical differentiation error)
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Numerical Differentiation

Given a finite set of points X = {x1, . . . ,xN} ⊂ R
d and function

values fj = f (xj), we want to approximate the values Df (z) at

arbitrary points z, where D is a linear differential operator

Df (z) =
∑

α∈Zd
+, |α|≤k

aα(z)∂
αf (z)

k is the order of D, |α| := α1 + · · ·+ αd , aα(z) ∈ R.
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Numerical Differentiation

Approximation approach

Df (z) ≈ Dp(z), where p is an approximation of f , e.g.,

least squares fit from a finite dimensional space P
partition of unity interpolant

moving least squares fit

RBF / kernel interpolant

If p =
m∑

i=1

aiφi and the coefficients ai depend linearly on

f (xj), i.e. a = Af |X, then p = φa = φAf |X,

Dp(z) = Dφ(z)A︸ ︷︷ ︸
w

f |X =
N∑

j=1

wj f (xj).

This leads to a numerical differentiation formula

Df (z) ≈
N∑

j=1

wj f (xj), w: a weight vector.
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Numerical Differentiation

Exactness approach

Require exactness of the numerical differentiation formula

for all elements of a space P:

Dp(z) =

N∑

j=1

wj p(xj) for all p ∈ P .

Notation: w ⊥D P.

E.g., exactness for polynomials of certain order q:

P = Πd
q , the space of polynomials of total degree < q in d

variables. (Polynomial numerical differentiation.)

Example: five point star (exact for Π2
4)

x0 x1

x2

x3

x4

∆u(x0) ≈ 1
h2

(
u(x1)+u(x2)+u(x3)+u(x4)

−4u(x0)
)
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Numerical Differentiation

Exactness approach

A classical method for computing weights w ⊥D Πd
q is

truncation of Taylor expansion of local error f − p near z

(as in the Finite Difference Method).

Instead, we can look at

Dp(z) =
N∑

j=1

wj p(xj) for all p ∈ Πd
q .

as an underdetermined linear system w.r.t. w, and pick

solutions with desired properties.

Similar to quadrature rules (Gauss formulas), there are

special point sets that admit weights with particularly high

exactness order for a given N (five point star).
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Numerical Differentiation

Joint work with Robert Schaback

O. Davydov and R. Schaback, Error bounds for

kernel-based numerical differentiation, Numer. Math., 132

(2016), 243-269.

O. Davydov and R. Schaback, Minimal numerical

differentiation formulas, preprint. arXiv:1611.05001

O. Davydov and R. Schaback, Optimal stencils in Sobolev

spaces, preprint. arXiv:1611.04750
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Polynomial Formulas: General Error Bound

Theorem

If w is exact for polynomials of order q > k (the order of D), then

|Df (z)−
N∑

j=1

wj f (xj)| ≤ |f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 ,

where |f |∞,q,Ω :=
( 1

q!

∑

|α|=q

1

α!
‖∂αf‖2

∞,Ω

)1/2
.
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Polynomial Formulas: General Error Bound

Theorem

If w is exact for polynomials of order q > k (the order of D), then

|Df (z)−
N∑

j=1

wj f (xj)| ≤ |f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 ,

where |f |∞,q,Ω :=
( 1

q!

∑

|α|=q

1

α!
‖∂αf‖2

∞,Ω

)1/2
.

Proof: Let R(x) := f (x)− Tq,zf (x) be the remainder of the

Taylor polynomial or order q. Recall the integral representation

R(x) = q
∑

|α|=q

(x − z)α

α!

∫ 1

0

(1 − t)q−1∂αf (z + t(x − z))dt .

Since q > k , it follows that DR(z) = 0.
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Polynomial Formulas: General Error Bound

Thus, we have for R(x) := f (x)− Tq,zf (x): DR(z) = 0,

R(x) = q
∑

|α|=q

(x − z)α

α!

∫ 1

0

(1 − t)q−1∂αf (z + t(x − z))dt .

Hence

|R(xj)| ≤
∑

|α|=q

|(xj − z)α|
α!

‖∂αf‖C(Ω)

≤
( ∑

|α|=q

(xj − z)2α

α!

∑

|α|=q

‖∂αf‖2
C(Ω)

α!

)1/2

= ‖xj − z‖q
2

( 1

q!

∑

|α|=q

1

α!
‖∂αf‖2

C(Ω)

)1/2

︸ ︷︷ ︸
=|f |∞,q,Ω
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Polynomial Formulas: General Error Bound

With R(x) := f (x)− Tq,zf (x), DR(z) = 0 and

|R(xj)| ≤ ‖xj − z‖q
2 |f |∞,q,Ω,

polynomial exactness implies

|Df (z)−
N∑

j=1

wj f (xj)| = |DR(z)−
N∑

j=1

wj R(xj)|

≤
N∑

j=1

|wjR(xj)|

= |f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 .
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Polynomial Formulas: General Error Bound

If w is exact for polynomials of order q > k (the order of D), then

|Df (z)−
N∑

j=1

wj f (xj)| ≤ |f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 .

Gives in particular an error bound in terms of Lebesgue

(stability) constant ‖w‖1 :=
∑N

j=1 |wj |:

Df (z)−
N∑

j=1

wj f (xj)| ≤ |f |∞,q,Ω‖w‖1h
q
z,X,

where

hz,X := max
1≤j≤N

‖xj − z‖2

is the radius of the set of influence.

Applicable in particular to polyharmonic formulas.
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Polynomial Formulas: General Error Bound

If w is exact for polynomials of order q > k (the order of D), then

|Df (z)−
N∑

j=1

wj f (xj)| ≤ |f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 .

The best bound is obtained if

N∑

j=1

|wj |‖xj − z‖q
2 is

minimized over all weights w satisfying the exactness

condition Dp(z) =
∑N

j=1 wj p(xj), ∀p ∈ Πd
q . (w ⊥D Πd

q )

We call them ‖·‖1,q-minimal weights.
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Polynomial Formulas: ‖·‖1,µ-minimal weights

An ‖·‖1,µ-minimal (µ ≥ 0) weight vector w∗ satisfies

N∑

j=1

|w∗
j |‖xj − z‖µ2 = inf

w∈RN

w⊥DΠd
q

N∑

j=1

|wj |‖xj − z‖µ2 .
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Polynomial Formulas: ‖·‖1,µ-minimal weights
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j |‖xj − z‖µ2 = inf

w∈RN

w⊥DΠd
q

N∑

j=1

|wj |‖xj − z‖µ2 .

‖·‖1,µ-minimal weights can be found by linear

programming (e.g. simplex algorithm if N is small).
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Our error bound suggests the choice µ = q.

w∗ is sparse in the sense that the number of nonzero wj ’s

does not exceed dimΠd
q .
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Polynomial Formulas: ‖·‖1,µ-minimal weights

An ‖·‖1,µ-minimal (µ ≥ 0) weight vector w∗ satisfies

N∑

j=1

|w∗
j |‖xj − z‖µ2 = inf

w∈RN

w⊥DΠd
q

N∑

j=1

|wj |‖xj − z‖µ2 .

‖·‖1,µ-minimal weights can be found by linear

programming (e.g. simplex algorithm if N is small).

µ = 0: formulas with optimal stability constant
∑N

j=1 |w∗
j |

Our error bound suggests the choice µ = q.

w∗ is sparse in the sense that the number of nonzero wj ’s

does not exceed dimΠd
q .

Considered by Seibold (2006) for D = ∆ under additional

condition of “positivity,” which restricts exactness to q ≤ 4.
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Polynomial Formulas: ‖·‖1,µ-minimal weights

Influence of µ on the location of nonzero weights w∗
j 6= 0.
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(b) µ = q = 7
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(c) µ = 15

‖·‖1,µ-minimal weights (µ = 0,7,15) of exactness order q = 7

computed for the Laplacian at the origin from the data at 150

points. Locations of 28 points xj for which w∗
j 6= 0 are shown.
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Polynomial Formulas: ‖·‖1,µ-minimal weights

Scalability

‖·‖1,µ-minimal formulas are scalable in the sence that the

weight vector w can be computed by scaling z,X into 0,Y
in the unit circle by yj = h−1

z,X(xj − z), obtaining weight

vector v for the mapped differential operator, and scaling

back by wj = h−k
z,Xvj .

This allows for stable computation of this formulas for any

small radius hz,X by upscaling preconditioning.

Any scalable differentiation formulas admit error bounds of

the type Chs−k
z,X for sufficiently smooth functions f , where C

depends on the Lebesque constant of the upscaled

formula v.

Oleg Davydov Consistency Estimates for gFD 17



Polynomial Formulas: Growth Function

Duality:

inf
w⊥DΠ

d
q

N∑

i=1

|wi | ‖xi − z‖q
2 =

= sup
{

Dp(z) : p ∈ Πd
q , |p(xi)| ≤ ‖xi − z‖q

2 , ∀i
}

=: ρq,D(z,X)

A special case of Fenchel’s duality theorem, but can be

also proved directly by using extension of linear functionals.

We call ρq,D(z,X) the growth function.

More general, for any seminorm ‖·‖ on R
N ,

inf
w⊥DΠ

d
q

‖w‖ = sup
{

Dp(z) : p ∈ Πd
q , ‖p|X‖∗ ≤ 1

}

=: ρq,D(z,X, ‖·‖).

Oleg Davydov Consistency Estimates for gFD 18



Polynomial Formulas: Growth Function

Theorem

For any ‖·‖1,q-minimal formula,

|Df (z)−
N∑

j=1

wj f (xj)| ≤ ρq,D(z,X)|f |∞,q,Ω.

As we will see, similar estimates involving ρq,D(z,X) hold

for kernel methods as well!

Oleg Davydov Consistency Estimates for gFD 19



Polynomial Formulas: Growth Function

Default behavior of growth function

ρq,D(z,X) := sup
{
|Dp(z)| : p ∈ Πd

q , |p(xi)| ≤ ‖xi − z‖q
2 , ∀i

}
,

hz,X := max
1≤j≤N

‖z − xj‖2

If X is a “good” set for Πd
q (“norming set”), then

max
‖x−z‖2≤hz,X/2

|p(x)| ≤ C max
i

|p(xi)| ≤ Ch
q
z,X,

hence |Dp(z)| ≤ Ch
q−k
z,X and ρq,D(z,X) ≤ Ch

q−k
z,X ,

so that we get an error bound of order h
q−k
z,X :

|Df (z)−
N∑

j=1

wj f (xj)| ≤ Ch
q−k
z,X |f |∞,q,Ω.

X does not have to a norming set. Example: five point star.
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Polynomial Formulas: Growth Function

Example: Five point stencil for Laplace operator ∆ in 2D

∆u(z) ≈ ∑5
i=1 wiu(xi),

{x1, . . . ,x5} = Xh = {z, z ± (h,0), z ± (0,h)} ⊂ Ωh

The classical FD formula with weights

w2 = w3 = w4 = w5 = 1/h2, w1 = −4/h2 is exact for Π2
4.

It is the only formula on Xh with this exactness order,

hence it is ‖·‖1,4-minimal.

It is easy to show that ρ4,∆(z,X) = 4h2

Hence,

|∆f (z)−
5∑

i=1

wiu(xi)| ≤ 4h2‖f‖∞,4,Ωh ,

similar to classical error estimates for the five point stencil.

Oleg Davydov Consistency Estimates for gFD 21



Polynomial Formulas: Growth Function

A lower bound for well separated centers

Theorem

Given z and X, let γ ≥ 1 be such that

‖xj − z‖2 ≤ γ dist(xj ,X \ {xj}), j = 1, . . . ,N.

For any w and q > k there exists a function f ∈ C∞(Rd) s. t.

|Df (z)−
N∑

j=1

wj f (xj)| ≥ C|f |∞,q,Ω

N∑

j=1

|wj |‖xj − z‖q
2 ,

where C depends only on q, k ,N,d and γ.

In particular, if w is exact for polynomials of order q, then

|Df (z)−
N∑

j=1

wj f (xj)| ≥ Cρq,D(z,X)|f |∞,q,Ω.
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Kernel-Based Formulas

Let K : Rd × R
d → R be a symmetric kernel, conditionally

positive definite (cpd) of order s ≥ 0 on R
d (positive definite

when s = 0). Πd
s : polynomials of order s.

For a Πd
s -unisolvent X, the kernel interpolant rX,K ,f in the form

rX,K ,f =
N∑

j=1

ajK (·,xj) +
M∑

j=1

bjpj , aj ,bj ∈ R, M = dim(Πd
s ),

is uniquely determined from the positive definite linear system

rX,K ,f (xk ) =
N∑

j=1

ajK (xk ,xj) +
M∑

j=1

bjpj(xk ) = fk , 1 ≤ k ≤ N,

N∑

j=1

aj pi(xj) = 0, 1 ≤ i ≤ M.

Oleg Davydov Consistency Estimates for gFD 23



Kernel-Based Formulas

Examples. K (x,y) = φ(‖x − y‖)
(φ : R+ → R is then a radial basis function (RBF))

s ≥ 0: Any φ with positive Fourier transform of Φ(x) = φ(‖x‖)
Gaussian φ(r) = e−r2

inverse quadric 1/(1 + r2)

inverse multiquadric 1/
√

1 + r2

Matérn kernel Kν(r)r
ν , ν > 0

(Kν(r) modified Bessel function of second kind)

s ≥ 1: multiquadric
√

1 + r2

s ≥ ⌊ν/2⌋+ 1: polyharmonic / thin plate spline rν{log r}

K (εx, εy) are also cpd kernels (ε > 0: shape parameter)

Oleg Davydov Consistency Estimates for gFD 24



Kernel-Based Formulas

Optimal Recovery

rX,K ,f depends linearly on the data fj = f (xj),

rX,K ,f (z) =

N∑

j=1

w∗
j f (xj), w∗

j ∈ R, j = 1, . . . ,N.

(w∗
j = w∗

j (z) depends on the evaluation point z ∈ R
d )

The weights w∗ = {w∗
j }N

j=1 provide optimal recovery of f (z)
for f in the native space FK associated with K , i.e.,

inf
w∈RN

w⊥Πd
s

sup
‖f‖FK

≤1

∣∣∣f (z)−
N∑

j=1

wj f (xj)
∣∣∣ = sup

‖f‖FK
≤1

∣∣∣f (z)−
N∑

j=1

w∗
j f (xj)

∣∣∣,

w ⊥ Πd
s : exactness for polynomials in Πd

s (empty if s = 0).
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Kernel-Based Formulas

“Native Space" FK

If K is positive definite, then FK is just the reproducing

kernel Hilbert space associated with K ; in the c.p.d. case a

generalization of it (a semi-Hilbert space).

In the translation-invariant case K (x,y) = Φ(x − y) on R
d ,

FK = {f ∈ L2(R
d) : ‖f‖FK

:=
∥∥∥f̂/

√
Φ̂
∥∥∥

L2(Rd )
< ∞}.

Matérn kernel K (x,y) = Kν(‖x − y‖)‖x − y‖ν :

Φ̂(ω) = cν,d (1 + ‖ω‖2)−ν−d/2 =⇒ ‖f‖FK
= cν,d‖f‖Hν+d/2(Rd )

(Sobolev space)

Polyharmonics: ‖f‖FK
equlivalent to Sobolev seminorm

C∞ kernels: spaces of infinitely differentiable functions

Oleg Davydov Consistency Estimates for gFD 26



Kernel-Based Formulas

A kernel-based numerical differentiation formula is obtained by

applying D to the kernel interpolant (approximation approach):

Df (z) ≈ DrX,K ,f (z) =

N∑

j=1

w∗
j f (xj).

The weights w∗
j can be calculated by solving the system

N∑

j=1

w∗
j K (xk ,xj) +

M∑

j=1

cjpj(xk ) = [DK (·,xk )](z), 1 ≤ k ≤ N,

N∑

j=1

w∗
j pi(xj) + 0 = Dpi(z), 1 ≤ i ≤ M.
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Kernel-Based Formulas: Optimal recovery

Kernel-based weights w∗ = {w∗
j }N

j=1 provide optimal

recovery of Df (z) from f (xj), j = 1, . . . ,N, for f ∈ FK ,

inf
w∈RN

w⊥DΠd
s

sup
‖f‖FK

≤1

∣∣∣Df (z)−
N∑

j=1

wj f (xj)
∣∣∣ = sup

‖f‖FK
≤1

∣∣∣Df (z)−
N∑

j=1

w∗
j f (xj)

∣∣∣,

FK is the native space of K

w ⊥D Πd
s : exactness of numerical differentiation for

polynomials in Πd
s ,

Oleg Davydov Consistency Estimates for gFD 28



Kernel-Based Formulas: Optimal recovery

Kernel-based weights w∗ = {w∗
j }N

j=1 provide optimal

recovery of Df (z) from f (xj), j = 1, . . . ,N, for f ∈ FK ,

inf
w∈RN

w⊥DΠd
s

sup
‖f‖FK

≤1

∣∣∣Df (z)−
N∑

j=1

wj f (xj)
∣∣∣ = sup

‖f‖FK
≤1

∣∣∣Df (z)−
N∑

j=1

w∗
j f (xj)

∣∣∣,

FK is the native space of K

w ⊥D Πd
s : exactness of numerical differentiation for

polynomials in Πd
s ,

For example, the formula obtained with Matérn kernel

K (x,y) = Kν(‖x − y‖)‖x − y‖ν , ν > 0 (s = 0),

gives the best possible estimate of Df (z) if we only know

that f belongs to the Sobolev space

FK = Hν+d/2(Rd )
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Kernel-Based Formulas: Optimal recovery

Optimal recovery error

PX(z) := sup
‖f‖FK

≤1

∣∣∣Df (z)−
N∑

j=1

w∗
j f (xj)

∣∣∣

is called power function and can be evaluated as

PX(z) =

√
ǫx

w∗ǫ
y
w∗K (x,y), ǫwf := Df (z)−

N∑

j=1

wj f (xj)

⇒ can be used to optimize the choice of the local set X.
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Kernel-Based Formulas: Error Bounds

Theorem

For any q ≥ max{s, k + 1},

|Df (z) − DrX,K ,f (z)| ≤ ρq,D(z,X)CK ,q‖f‖FK
, f ∈ FK ,

as soon as ∂α,βK (x,y) ∈ C(Ω× Ω) for |α|, |β| ≤ q, where

ρq,D(z,X) is the growth function,

CK ,q :=
1

q!

( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
‖∂α,βK‖2

C(Ω×Ω)

)1/4
< ∞.
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Kernel-Based Formulas: Error Bounds
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|Df (z) − DrX,K ,f (z)| ≤ ρq,D(z,X)CK ,q‖f‖FK
, f ∈ FK ,

as soon as ∂α,βK (x,y) ∈ C(Ω× Ω) for |α|, |β| ≤ q, where

ρq,D(z,X) is the growth function,

CK ,q :=
1

q!

( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
‖∂α,βK‖2

C(Ω×Ω)

)1/4
< ∞.

To compare with the optimal error bound of polynomial

approximation: |Df (z)−
N∑

j=1

wj f (xj)| ≤ ρq,D(z,X)|f |∞,q,Ω.
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Kernel-Based Formulas: Error Bounds

Theorem

For any q ≥ max{s, k + 1},

|Df (z) − DrX,K ,f (z)| ≤ ρq,D(z,X)CK ,q‖f‖FK
, f ∈ FK ,

as soon as ∂α,βK (x,y) ∈ C(Ω× Ω) for |α|, |β| ≤ q, where

ρq,D(z,X) is the growth function,

CK ,q :=
1

q!

( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
‖∂α,βK‖2

C(Ω×Ω)

)1/4
< ∞.

To compare with the optimal error bound of polynomial

approximation: |Df (z)−
N∑

j=1

wj f (xj)| ≤ ρq,D(z,X)|f |∞,q,Ω.

Robustness: Prior knowledge of the approximation order

attainable on X is not needed since estimate holds for all q.
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Kernel-Based Formulas: Error Bounds

Theorem

For any q ≥ max{s, k + 1},

|Df (z) − DrX,K ,f (z)| ≤ ρq,D(z,X)CK ,q‖f‖FK
, f ∈ FK ,

as soon as ∂α,βK (x,y) ∈ C(Ω× Ω) for |α|, |β| ≤ q, where

ρq,D(z,X) is the growth function,

CK ,q :=
1

q!

( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
‖∂α,βK‖2

C(Ω×Ω)

)1/4
< ∞.

Growth function ρq,D(z,X) can be evaluated on repeated

patterns, to get estimates without unknown constants.

E.g., ρ4,∆(z,X) = 4h2 for the five point star, leading to the

estimate |∆f (z)−∆rXh,K ,f (z)| ≤ 4h2CK ,4‖f‖FK
if the kernel

K is sufficiently smooth.
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Kernel-Based Formulas: Polyharmonic Formulas

Polyharmonic formulas with φ(r) = rν{log r} and s ≥ ⌊ν/2⌋+ 1

If m := (ν+ d)/2 is integer and s ≥ m, they provide optimal

recovery in Beppo-Levi space BLm(R
d ), the semi-Hilbert

space generated by m-th order Sobolev seminorm, among

all formulas with polynomial exactness order s, and admit

error bounds of the type C1h
ν/2−k
z,X for f ∈ BLm(R

d ).
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space generated by m-th order Sobolev seminorm, among

all formulas with polynomial exactness order s, and admit

error bounds of the type C1h
ν/2−k
z,X for f ∈ BLm(R

d ).

They are scalable and can therefore be stably computed

by upscaling preconditioning for any small radius hz,X. The

constant C1 depends on the power function of the

‘upscaled’ formula v.
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d ).

They are scalable and can therefore be stably computed

by upscaling preconditioning for any small radius hz,X. The

constant C1 depends on the power function of the

‘upscaled’ formula v.

As any scalable differentiation formulas of exactness order

s, they also admit error bounds of the type C2hs−k
z,X for

sufficiently smooth f , where C2 depends on on the

Lebesgue constant of v.
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Kernel-Based Formulas: Polyharmonic Formulas

Polyharmonic formulas with φ(r) = rν{log r} and s ≥ ⌊ν/2⌋+ 1

If m := (ν+ d)/2 is integer and s ≥ m, they provide optimal

recovery in Beppo-Levi space BLm(R
d ), the semi-Hilbert

space generated by m-th order Sobolev seminorm, among

all formulas with polynomial exactness order s, and admit

error bounds of the type C1h
ν/2−k
z,X for f ∈ BLm(R

d ).

They are scalable and can therefore be stably computed

by upscaling preconditioning for any small radius hz,X. The

constant C1 depends on the power function of the

‘upscaled’ formula v.

As any scalable differentiation formulas of exactness order

s, they also admit error bounds of the type C2hs−k
z,X for

sufficiently smooth f , where C2 depends on on the

Lebesgue constant of v.

Robust kernel-based estimates are however not applicable.
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Least Squares Formulas

Discrete Least Squares

Let X = {x1, . . . ,xN} be unisolvent for Πd
q (N ≥ dimΠd

q ).

The weighted least squares polynomial Lθ

X,qf ∈ Πd
q is uniquely

defined by the condition

‖(Lθ

X,q f − f )|X‖2,θ = min
{
‖(p − f )|X‖2,θ : p ∈ Πd

q

}
,

where

‖v‖2,θ :=
( N∑

j=1

θjv
2
j

)1/2
, θ = [θ1, . . . , θN ]

T , θj > 0.

Exact for polynomials: Lθ

X,qp = p for all p ∈ Πd
q

Num. differentiation: Df (z) ≈ DLθ

X,qf (z) =
N∑

j=1

w
2,θ
j f (xj)

The weights w
2,θ
j are scalable.
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Least Squares Formulas

Dual formulation

The weight vector w2,θ of Df (z) ≈ DLθ

X,qf (z) =
N∑

j=1

w
2,θ
j f (xj)

solves the quadratic minimization problem

‖w2,θ‖2
2,θ−1 = inf

w∈RN

w⊥DΠd
q

‖w‖2
2,θ−1 ,

where θ
−1 := [θ−1

1 , . . . , θ−1
N ]T , ‖w‖2,θ−1 =

( N∑
j=1

w2
j

θj

)1/2
.

It follows that

‖w2,θ‖2,θ−1 = sup
{

Dp(z) : p ∈ Πd
q , ‖p|X‖2,θ ≤ 1

}

=: ρq,D(z,X, ‖·‖2,θ−1),

with a generalized growth function.

Oleg Davydov Consistency Estimates for gFD 33



Least Squares Formulas

Theorem

|Df (z)− DLθ

X,qf (z)| ≤
≤ ρq,D(z,X, ‖·‖2,θ−1)

( N∑

j=1

θj‖xj − z‖2q
2

)1/2
|f |∞,q,Ω.

In particular, for θj = ‖xj − z‖−2q
2 ,

|Df (z)− DLq
X,qf (z)| ≤

√
N ρq,D(z,X,2) |f |∞,q,Ω,

where

ρq,D(z,X,2) = ‖w2,q‖2,q :=
( N∑

j=1

(w
2,q
j )2‖xj − z‖2q

2

)1/2
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Least Squares Formulas

Connection between ρq,D(z,X) and ρq,D(z,X,2)

We have

ρq,D(z,X,2) ≤ ρq,D(z,X) ≤
√

Nρq,D(z,X,2).
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Connection between ρq,D(z,X) and ρq,D(z,X,2)

We have

ρq,D(z,X,2) ≤ ρq,D(z,X) ≤
√

Nρq,D(z,X,2).

This implies for the least squares formulas with

θj = ‖xj − z‖−2q
2 an error bound in terms of ρq,D(z,X):

|Df (z)− DL
q
X,qf (z)| ≤

√
N ρq,D(z,X) |f |∞,q,Ω,

which is only by factor
√

N worse than the error bound for

the ‖·‖1,q-minimal formula.
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Connection between ρq,D(z,X) and ρq,D(z,X,2)

We have

ρq,D(z,X,2) ≤ ρq,D(z,X) ≤
√

Nρq,D(z,X,2).

This implies for the least squares formulas with

θj = ‖xj − z‖−2q
2 an error bound in terms of ρq,D(z,X):

|Df (z)− DL
q
X,qf (z)| ≤

√
N ρq,D(z,X) |f |∞,q,Ω,

which is only by factor
√

N worse than the error bound for

the ‖·‖1,q-minimal formula.

We can estimate ρq,D(z,X) with the help of ρq,D(z,X,2),
which is cheaper to compute by quadratic minimization or

orthogonal decompositions instead of ℓ1 minimization.
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Selection of Sets of Influence

Sets of influence: Select Ξi for each ξi ∈ Ξ \ ∂Ξ

ξi

ξi

Ξi

Ξi is the ‘star’ or ‘set of influence’ of ξi
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Selection of Sets of Influence

Selection is non-trivial on non-uniform points, especially

near domain’s boundary
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(c) better selection

Points in (a) are obtained by DistMesh (Persson & Strang, 2004)

using a theoretically justified (Wahlbin, 1991) density function.
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Selection of Sets of Influence: Geometric Selection

Geometric selection for Laplacian

Choose points in a rather uniform way around ξi .

Four quadrant criterium (Liszka & Orkisz, 1980)

(Image from Lyszka, Duarte & Tworzydlo, 1996)
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Selection of Sets of Influence: Geometric Selection

Choose n = 6 points around ξi as close as possible to the

vertices of an equilateral hexagon (D. & Dang, 2011;

Dang, D. & Hoang, 2017): discrete optimization
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successful for low order methods (O(h2) for Poisson eq.)

(n = 6 gives a fair comparison to linear FEM where the

rows of the system matrix have 7 nonzeros on average)

too complicated to extend to higher order gFD methods
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Selection of Sets of Influence

Selection via polynomial formulas

For a given approximation order smaller sets of influence

are preferred since they lead to sparser system matrices
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Selection via polynomial formulas

For a given approximation order smaller sets of influence

are preferred since they lead to sparser system matrices

This makes a case for ‖·‖1,µ-minimal formulas

It is possible to employ ‖·‖1,µ-minimal formulas just as a

method to select sets of influence, and compute the more

robust kernel-based weights on these sets

(Bayona, Moscoso & Kindelan, 2011: for Seibold’s positive

minimal formulas)
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Selection of Sets of Influence

Selection via polynomial formulas

For a given approximation order smaller sets of influence

are preferred since they lead to sparser system matrices

This makes a case for ‖·‖1,µ-minimal formulas

It is possible to employ ‖·‖1,µ-minimal formulas just as a

method to select sets of influence, and compute the more

robust kernel-based weights on these sets

(Bayona, Moscoso & Kindelan, 2011: for Seibold’s positive

minimal formulas)

New idea: least squares thresholding

Oleg Davydov Consistency Estimates for gFD 40



Selection of Sets of Influence: LS Thresholding

Least squares thresholding: Compute a least squares

numerical differentiation formula, and pick the positions of n

largest weights.

Example: compare (a) 6 nearest points, (b) 6 positions of

nonzero ‖·‖1,3-minimal weights of exactness order 3,

(c) positions of n = 6 largest weights of a least squares

formula of exactness order 3.
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(c) LS thresholding
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Selection of Sets of Influence: LS Thresholding

Test Problem

Dirichlet problem for the Helmholz equation −∆u − 1
(α+r)4 u = f ,

r =
√

x2 + y2 in the domain Ω = (0,1)2. RHS and the

boundary conditions chosen such that the exact solution is

sin( 1
α+r

), where α = 1
50π .

Exact solution:
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Selection of Sets of Influence: LS Thresholding

Adaptive nodes from a FEM triangulation by PDE Toolbox
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Selection of Sets of Influence: LS Thresholding

RMS Errors of FEM and RBF-FD solutions with Gauss-QR and

different selection methods for 6 neighbors
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X-axis: number of interior nodes
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Conclusion

Polynomial and kernel-based numerical differentiation

share similar error bounds that split into factors responsible

for the smoothness of the data (e.g. Sobolev norm) and for

the geometry of the nodes (Lebesque constant, growth

function).

Growth function can be efficiently estimated by least

squares methods. It may be useful for node generation and

selection of sets of influence with prescribed consistency

orders of generalized finite difference methods.

Sparse sets of influence can be found with the help of

‖·‖1,µ-minimal polynomial formulas, and more efficiently by

least squares thresholding.
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